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Eq. (21) can be rewritten as

q(t)=i§:

i=1j=1

Ms Ny

Z Z BijmnTsmn |1 (1) (22)

m=1n=1

Designating the expected weighting coefficientin Eq. (22) as p;;
for the lowest M, - N, the z coordinate of the midplane for each
sensor segment can be obtained by solving

Ms  Ns

Z Zﬂ[jmnrsmn = p[j

m=1n=1

i=12,...,M, j=12,..., N, (23)

If some modes in the lowest M, - N; modes are notexpectedto be
sensed, the related weighting coefficients are set to be 0. The charge
output of the modal sensor might contain the information of the
modes whose orders are higher than M, - N;. However, these high-
frequency components in the sensed signal can be easily removed
by a low-pass filter.

VII. Results

As an illustrative example, consider a 1 m x 0.7 m x 1 mm
simply supported rectangular plate onto which one piezo-
ceramic actuator layer and one piezoceramic sensor are
bonded. The actuator and the sensor layers are made of the
same lead zirconate titanate (PZT) material, and e§, =¢e =
23.31 N/Vm. The Young’s modulus of the host plate is 210 GPa,
and its mass density is 8000 kg/m>. The first five (11, 21, 12, 31, 22)
modes are selected to be controlled by using the modal sensor
and the modal actuator. For the modal actuator the constants in
Eq. (5) are taken as A, =1.0, A5, =0.8, A{,=0.7, A5, =0.6,
A%, =05A,=25x 1073, and C, = 0.013, respectively. The max-
imum thickness of the modal actuator is less than 0.12 mm, as
shown in Fig. 2a. The modal sensor is designed with the pa-
rameters A}, =1.0, A3, =0.7, A},=0.6, A}, =0.5, A}, =04,
A, =3x 107, and C, =0 so that its maximum thickness is less
than 0.1 mm, as shown in Fig. 2b. The free vibration of the smart
plate is caused by the sudden removal of a force of 3.5 N acted on
the point (0.4, 0.3). Using the modal actuator and modal sensor and
taking the control gain # in Eq. (13) as 7 x 10°, the modal control
is performed, and the five controlled modes are shown in Fig. 3.
The time history of the central displacementof the plate and control
voltage applied on the modal actuator during control are presented
in Figs. 4a and 4b, respectively. The results show that all of the target
modes of the smart plate have been effectively controlled.

When a pair of uniform actuator and sensor layer with the uni-
formly distributed control voltage are used to control the simply
supported rectangular plate, only the strict odd (for example, 11,
33, 55, etc.) modes can be controllable’!° Thus, modulating the
thicknessof the sensorand actuatorlayer can make the control more
effective and hence improve the controllability of the structures.

VIII. Conclusions

A new practical method to design the modal actuator/sensor is
given for modal control of smart plates by modulating the thickness
distributionof the piezoelectriclayer. If the stiffness and mass of the
piezoelectric layer are considered, the thickness distribution of the
modal actuator/sensor can be calculated by an iteration procedure
based on a finite element model. In this way the present designing
method for modal actuator and modal sensor can be applied to both
one-dimensional and two-dimensional structures, such as beams,
plates, and shells.
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Prediction and Design of Metal Plate
Vibration Behavior with Bonded
Composite Sheets
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I. Introduction

N practical situations, structural engineers sometimes face the

necessity of increasingthe stiffness of already existing structures
when applied load in actual use exceeds expected design values or
the safety standard is strengthened. One recently emerging tech-
nique is to bond composite material sheets externally to the existing
structures.!'? This techniqueis now widely used in civil engineering
structures by making use of its low cost and ease of operation. The
authors found in their experiment that this technique is equally ap-
plicableto increase static stiffness and strength of metal plates. This
reinforcement was effectively made possible to aluminum plates
by epoxy adhesive, and the beam under bending showed relatively
large deformation without visible debonding of the sheet.

The presentNote studies applicabilityof this technique to design-
ing the maximum natural frequency of metal (aluminum) plates.
Theoretically this problem is more complicated than the static opti-
mization, for example, minimizing static deflection, where increase
in the bending stiffness is the only consideration. When dynamic
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behavioris optimized, forexample, maximizing natural frequencies,
bonding of extra sheets has two contradicting effects: increasing
natural frequencies by stiffening the plate system and decreasing
them by adding an extra mass. Moreover, even when the natural
frequencies are increased with stiffening effects of bonded sheets,
there must be most or nearly optimal location of the sheets that may
depend on mode shapes of the plate.

As a plate model, such a partially reinforced plate can be consid-
ered as a plate with stepped thickness. Some papers were published
dealing with vibration of isotropic plates with stepped thickness
(e.g.,Ref. 3), but the literature on vibration of isotropic plates partly
laminated with composite sheets has not been found because such
applications have been impractical in the past.

Based on this new technical demand, the present Note introduces
an analysis to study vibrationof a rectangularmetal (isotropic) plate
with bonded unidirectionalcomposite sheets on the surfaces. A Ritz
method is used to calculate natural frequencies of the plates with
arbitrary boundary conditions.In numerical examples, optimal solu-
tions are soughtto designthe rectangularplate to yield the maximum
fundamental frequency. The location and fiber orientation angle of
the bonded sheets are design variables in the optimization. Results
are shown to clarify effects of the design variables on increasing or
decreasing the fundamental frequencies, and the feasibility is cor-
roborated to obtain the optimized vibration behavior of metal plates
by use of bonded composite sheets.

II. Analytical Formulation

Figure 1 shows an isotropic rectangular plate, such as an alu-
minum plate, that has a pair of unidirectional composite sheets ex-
ternally bonded on the plate surfaces. The dimension of the base
plate is given by a x b x h (thickness), and an origin of the global
coordinatesis located in the center of the plate. Each unidirectional
sheet has dimension of A x B x H (thickness), and two sheets are
symmetrically bonded with an identical fiber orientation angle 6
and with the center location at (X, Y) on the surfaces. The location
of the sheets is arbitrary on the plate, as long as they stay within the
plate region. The sheets are assumed to be perfectly bonded to the
base plate.

An analytical method used here is a Ritz method that is chosen
due toits simplicity and applicability. The strain energy for the plate
system is given in classical plate theory by

1
U= 5 / (o8¢ + oy8y + T,vyyxy)dVP

1
+ 5 / (U,\'E,\' + Oy€y + Tyy ny) dVUS

1
+ 5 / (0,\'8,\' + 0y€y + Txy ny) dVLS (1)
b/2 / Edge@
I A
B
oXY)
| / o A
-a/? 2
o i £ A // o
Edge(1) 4 /Edge(3)
Edge(2)
-b/2

/]\ H
Fig.1 Rectangular isotropic plate having bonded composite sheets on
both surfaces.

where Vp in the firstintegral is volume of the base plate and Vys and
Vs in the second and third integrals are the volumes of the upper
and lower sheets, respectively. This expression includes both ener-
gies due to stretching and bending motions. The bending motion
can be uncoupled theoretically from the stretching motion in the
present problem because the two sheets are symmetrically bonded,
that is, symmetric laminate, with the identical shape and fiber ori-
entation. This allows us to consider only the bending (out-of-plane)
vibration that has lower frequency values. After integration along
the thickness, the strain energy due to bending is rewritten as

1 1
U= / {K}Di;{K} dAp + 5 /{K}[DZ]{K}T dAus (2)

where {K} is a curvature vector and [Dj;] and [Dl’fj] are stiffness
matrices given by

2 2 2
{K}Z{_a_w _w _zaw}

0x2 ay? 9xay
Dy Dy 0 [Dﬁ D}, Dz]
[Dj)=|Dn Dyn 0 |, [D;]=2|D;, D; Dj
0 0 Des Dy, D3 DZ(:J

3

where w is deflection of the plate and elements D;; and D}, can be
determined in an ordinary process.* Each element in the stiffness
matrix [D};] for the composite sheet is simply doubled due to the
symmetric nature of two sheets. The kinetic energy due to bending
vibration is defined by

1= (22 av, [ o (22) an
=3 Po 5 P P 5 US
2
0

where py and p* are mass per unit volume of the base plate and
the bonded sheet, respectively. The maximum strain energy U«
and kinetic energy T, are obtained by assuming sinusoidal time
variation sinwt and redefining w as an amplitude. For simplicity,
the nondimensional quantities are introduced as nondimensional
coordinates

§=2x/a, n=2y/b (52)
aspect ratio
a=a/b (5b)
sheet size ratio
8, =A/a, 8, =B/b (5¢)
thickness ratio
h=H/h (5d)
mass ratio
o =p"/po (5e)
stiffness ratio
dij = Dy; /Dy, d;; = D};/ Dy (5)
frequency parameter

Q = wa*(poh/Dy)* (59)
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and reference stiffness
E h?

=—> (5h)
(1 -w)

with Ej, and v, being Young’s modulus and Poisson’s ratio, respec-
tively, of the base plate. The transverse amplitude is assumed by

wE M) =YY Con X, €)Y, ©)

m=0n=0

where C,,, are unknown coefficients and the functions X,, and Y,
are

X, (&) = E™(& + DB (E — 1)B
Y, () =n"(n+ D@ — 1B (7

where BC1-BC4 are the boundary indices,” which are added to
satisfy the kinematical boundary conditions (BC) and are used in
such a way that BC; =0 for free edge (F), 1 for simply supported
edge (S), and 2 for clamped edge (C). The integer i denotes edges.
(Herei =1isanedgealong & = —1, and edges 2, 3, and 4 are along
n=—1,& =1, and n= 1, respectively, as shown in Fig. 1.) To the
CSFF plate, for instance, BC; =2,BC, =1 and BC; =BC, =0 are
applied. With these boundary indices BC; and Egs. (7), the method
of Ritz can accommodate arbitrary sets of the classical BCs.

After minimizing F = Ty — Umax With respect to C,,,, one
obtains the frequency equation

Z Z|:d11[1(2200) +a4d2211(0022) +40!2d6611(1111)

m=0n=0

+a2d12(11(0220) + [1(2002)) +d-“[2(2200) +(x4d_2212(0022)
+4(¥2d_6612(1m) +a2d_12([2(0220) + [2(2002))

+2(¥d_m(12(1210) +[2(2101)) _}_2(13‘1‘26([;1012)_*_[;0121))

{Cmn} = 0

.mmnin

Qz 0000 =7 7(0000
=5 (1 + 2014 ))}
A=0,1,... ()

m=0,1,...,

in nondimensional form, where the I are definite integrals that can
be evaluated exactly because the integrants are power functions.
Equation (8) is a set of linear simultaneous equations in terms of the
coefficients C,,,, and the eigenvalues 2 may be extracted by using
existing computer subroutines.

III. Numerical Results and Discussion

In numerical examples, the isotropic base plate is assumed to
be aluminum with material constants of £y = 70.6 GPa, vy =0.34,
and p, = 2700 kg/m?. The constants for a pair of bonded sheets are
E;, =138 GPa, Er =8.96 GPa, G,r =7.1 GPa, v,7 =0.30, and
o = 1600 kg/m? of graphite/epoxy composite® Thus a mass ratio
resultsin p = p/py =0.6. ~

The thicknessratio is takenas 7 = H/h = 0.1, where the bonded
partis 20% thicker than the base plate. Note that the sheet thickness
is considerably thinner than the base plate. The sheet has a square
shape and is located at different points: 1, (X, Y) =(—0.5, 0.5); 2,
(0, 0.5); 3, (0.5, 0.5); 4, (=0.5, 0); 5, (0, 0); 6, (0.5, 0); 7, (—0.5,
—0.5); 8, (0, —0.5); and 9, (0.5, —0.5), as shown in Fig. 2.

A convergence study was made for the frequency parameters
Q,-Qs (lowest five modes) of the square plate. A pair of bonded
sheets have dimension of §, =§, = 0.5, where the area of the sheet
is a quarter of the base plate, located at the center (X, Y) = (0, 0)
on the base plate. The fiber orientation angle within the sheet is
6 =30deg. The BC of the plate is simply supported along the entire
edges (SSSS). The calculated frequencies monotonically decrease
from above (upperbound) as the number of terms is increased in
Eq. (6) and tend to converge well as ©2; =20.08 (20.08), 2, =49.39
(49.38), Q23 =49.77 (49.74), 2, =280.20 (80.19), and Qs =98.97
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Fig.2 Location of the square composite sheet on the square base plate
in numerical examples.
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Fig. 3 Ratio of fundamental frequencies Q; of the cantilever plate
with sheet to aluminum plate vs the fiber orientation angle 6: =1 and
6, =0,=0.5.

(98.97) for M = N =10, where values in the parentheses are for
M = N =12. Based on this test result, frequency parameters are
calculated hereafter by using the M x N =10 x 10 solutions.

Accuracy of the present solution is also validated by comparing
with those of anisotropicsteppedplate, thatis, amodel consideredto
be abase plate with sheets of the same isotropicmaterial. The present
lowest five frequencies are given by €, =20.59 (20.43) (Ref. 3),
2, =49.90 (49.84), Q3 =283.16 (83.36), €2, =105.0 (105.3), and
Q5 =106.7 (105.9) for a simply supported square plate (SSSS) with
stepped parts [8, =8, =0.25, (X, Y)=(0, 0) ]. The present values
are in excellent agreement with those of Irie et al.® given in the
parentheses for all modes.

Figure 3 shows variations of the ratio €2, /2, where 2, is a fun-
damental frequency of sheet-bonded plate and €2, is a fundamental
frequency of aluminum plate without sheets. The ratio is plotted vs
a fiber orientation angle 6 within the bonded sheet (§, =8, =0.5)
for a cantilevered square plate (FFFC). The ratios are normalized
with respect to an aluminum plate without a bonded sheet to evalu-
ate the effect on frequency variations. If the ratio is more than one,
the sheetincreases the dynamic stiffness to yield higher frequency,
but the sheet has the effect of only adding inertia for 2, /Q, < 1 to
decrease the frequency.

Among differentlocation of the sheet, the fundamental frequency
for sheet 8, (X, Y)=(0, —0.5) at the free end is the lowest and is
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Table1 Ratios of the maximized fundamental frequencies
and optimal location and fiber orientation angle
of the bonded sheet: a =1 and §, =6, =0.5

BC Qmax/Qal (Xv Y)max emaXa deg S-zmin/Qal
FFFC 1.261 0,0.5) 90 0.970
FFSS 1.091 0.5,0.5) 135 0.946
FFSC 1.204 (—0.5,0.5) 82 0.951
FFCC 1.162 0.5,-0.5) 15 0.954
FSFC 1.098 0,0) 90 0.984
FSSS 1.187 (=0.5,0) 90 0.976
FSSC 1.135 (=0.5,0) 92 0.973
FSCS 1.137 (—0.5,0) 90 0.948
FSCC 1.131 (—0.5,0.5) 87 0.969
FCFC 1.087 0,0.5) 90 0.980
FCSC 1.138 (—0.5,0.5) 90 0.969
FCCC 1.140 (—0.5,0.5) 90 0.966
SSSS 1.071 (—0.5,0.5) 45 1.021
SSSC 1.077 0,0.5) 90 1.012
SSCC 1.071 (-0.5,-0.5) 135 1.019
SCSC 1.093 0, 0.5) 90 1.009
SCCC 1.077 0,0.5) 90 1.016
CCcC 1.062 (=0.5,0) 0 1.026

not virtually affected by the change of angle 6. In contrast, a plate
with the sheetatrootedge 2, (X, Y) = (0, 0.5), gives the highest fre-
quency because the fundamental mode is a simple bending motion
with no nodal line, and it is effective to increase the stiffness at the
clamped edge in the bending direction (6 =90). The difference be-
tween the maximum and minimum valuesin Fig. 3 is more than 25%.

Next the fundamental frequencies of the square plate are calcu-
lated for 18 differentcombinationsof classicalboundary conditions,
thatis, F, S, and C. There are 21 different combinations of the clas-
sical BCs for an isotropic square plate,’ but the three cases (FFFF,
SFFF, and FSFF) involving rigid-body motions are omitted. The
optimal fiber orientation angles 6,,,,x are searched to give the maxi-
mum fundamental frequencies 2, for nine given sheet locations
in Fig. 2, and the frequency ratios Qmax / Qa1 (Qmax = maximum$2)
are tabulated in Table 1. The ratios of the minimum frequency
Qnin/ Qa1 (Qmin = minimum§2, ) are also given at the rightmost col-
umn in Table 1.

IV. Summary

Generally, the sets of BCs are listed in the order of increasingedge
constraints, starting from FFFC to CCCC, in Table 1. Note that the
ratio Q. /2. is higher (the sheet has more stiffening effect) as
more free edges are involved. At the same time, however, there
exist ratios Q;,/ 24 that are less than one for BCs including at
least one free edge. This means that the location of the bonded sheet
has a significant effect for plates with more free edges. In contrast,
plates strongly constrained along edges (from SSSS to CCCC) are
notsignificantly influenced by addition of bonded composite sheets.
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Introduction

HE purpose of this investigation was to study the geomet-

ric nonlinear response of tapered ceramic matrix composite
(CMC) panels to narrowband random loading at several excitation
levels. For each loading scenario, the total strain, or combination of
bending and axial strain, was recorded at multiple locations along
with the axial and bending strain in the panel center. Results of the
study will be used to aid in the development of analytical response
and fatigue life prediction tools. A second part of this investigation
will be dedicated to the failure mode identification of the panels
under extreme acoustic and thermal excitation.

The particular CMC material selected has the potential to be used
in structurally integrated thermal protection system applications on
future hypersonic, transatomospheric, and reusable space vehicles.
CMCs representa class of materials capable of withstanding the in-
tense thermal and acoustic environments such vehicles would expe-
rience. This particular CMC is proposed for structures experiencing
temperatures in the 871°C (1600°F) range but is representative of
room temperatureresponse and failure of brittle matrix composites.

Blevins etal.! and Vaicaitis* describe the need for new and exotic
materials. They note that even unconventionalnickel and iron-based
superalloys are limited to 982°C (1800°F) before the onset of ox-
idation and creep. A transatmospheric vehicle will experience the
greatestthermalloadingin the nose,engineinlet,and nozzle sections
with estimated temperatures exceeding 1650°C (3000°F). Further-
more, acousticloading due to engine noise alone will exceed 170 dB
(Ref. 1). This underscores the need for durable composite materials
that can withstand these extreme environments. Nonlinear random
vibration testing has been accomplished and described in the litera-
ture on metallic structures’® and composite materials,”~'? but fur-
therinvestigationsare necessarydue to the complex and often unpre-
dictable behavior of composite structures, particularly for unusual
geometries such as the asymmetric tapered panel considered here.

Experimental Procedure

This investigation was conducted in the dynamics and acous-
tics research facility at Wright-Patterson Air Force Base, Ohio.
The panels were manufactured from woven nitrided Nextel
312™/Blackglas™ CMC material and were tapered with the min-
imum thickness in the panel center to reduce the influence of the
boundary conditions on the panel failure mode. Figure 1 shows
the dimensions of the CMC panel. The panel was a quasi-isotropic
layup of 16 plies (0/90/45/—45/—45/0/90/45) around the perime-
ter panel/clamp interface, reduced to 8 plies (0/45/—45/90)s in the
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